3.326 \(\int \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} \, dx\)

Optimal. Leaf size=82 \[ \frac{\sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a+b} \sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{f}-\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{f} \]

[Out]

-((Sqrt[b]*ArcTanh[(Sqrt[b]*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/f) + (Sqrt[a + b]*ArcTanh[(Sqrt[a + b]*
Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/f

________________________________________________________________________________________

Rubi [A]  time = 0.0923954, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3190, 402, 217, 206, 377} \[ \frac{\sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a+b} \sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{f}-\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-((Sqrt[b]*ArcTanh[(Sqrt[b]*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/f) + (Sqrt[a + b]*ArcTanh[(Sqrt[a + b]*
Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/f

Rule 3190

Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 402

Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Dist[b/d, Int[(a + b*x^2)^(p - 1), x], x]
- Dist[(b*c - a*d)/d, Int[(a + b*x^2)^(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d,
0] && GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rubi steps

\begin{align*} \int \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{1-x^2} \, dx,x,\sin (e+f x)\right )}{f}\\ &=-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=-\frac{b \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{f}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{1}{1-(a+b) x^2} \, dx,x,\frac{\sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{f}\\ &=-\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{f}+\frac{\sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a+b} \sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{f}\\ \end{align*}

Mathematica [A]  time = 0.278162, size = 129, normalized size = 1.57 \[ \frac{\frac{\sqrt{a} \sqrt{-b} \sin ^{-1}\left (\frac{\sqrt{-b} \sin (e+f x)}{\sqrt{a}}\right ) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}}}{\sqrt{2 a-b \cos (2 (e+f x))+b}}+\sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{2 a+2 b} \sin (e+f x)}{\sqrt{2 a-b \cos (2 (e+f x))+b}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(Sqrt[a + b]*ArcTanh[(Sqrt[2*a + 2*b]*Sin[e + f*x])/Sqrt[2*a + b - b*Cos[2*(e + f*x)]]] + (Sqrt[a]*Sqrt[-b]*Ar
cSin[(Sqrt[-b]*Sin[e + f*x])/Sqrt[a]]*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a])/Sqrt[2*a + b - b*Cos[2*(e + f*x)
]])/f

________________________________________________________________________________________

Maple [B]  time = 3.635, size = 155, normalized size = 1.9 \begin{align*} -{\frac{1}{f}\sqrt{b}\ln \left ({ \left ( \sqrt{a+b-b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{b}+b\sin \left ( fx+e \right ) \right ){\frac{1}{\sqrt{b}}}} \right ) }+{\frac{1}{2\,f}\sqrt{a+b}\ln \left ( 2\,{\frac{\sqrt{a+b}\sqrt{a+b-b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}+b\sin \left ( fx+e \right ) +a}{-1+\sin \left ( fx+e \right ) }} \right ) }-{\frac{1}{2\,f}\sqrt{a+b}\ln \left ( 2\,{\frac{\sqrt{a+b}\sqrt{a+b-b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}-b\sin \left ( fx+e \right ) +a}{1+\sin \left ( fx+e \right ) }} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

-1/f*b^(1/2)*ln(((a+b-b*cos(f*x+e)^2)^(1/2)*b^(1/2)+b*sin(f*x+e))/b^(1/2))+1/2/f*(a+b)^(1/2)*ln(2/(-1+sin(f*x+
e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))-1/2/f*(a+b)^(1/2)*ln(2/(1+sin(f*x+e))*((a+b)^(1/2
)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.97599, size = 3027, normalized size = 36.91 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(b)*log(128*b^4*cos(f*x + e)^8 - 256*(a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^2*b^2 + 24*a*b^3 + 24*
b^4)*cos(f*x + e)^4 + a^4 + 32*a^3*b + 160*a^2*b^2 + 256*a*b^3 + 128*b^4 - 32*(a^3*b + 10*a^2*b^2 + 24*a*b^3 +
 16*b^4)*cos(f*x + e)^2 + 8*(16*b^3*cos(f*x + e)^6 - 24*(a*b^2 + 2*b^3)*cos(f*x + e)^4 - a^3 - 10*a^2*b - 24*a
*b^2 - 16*b^3 + 2*(5*a^2*b + 24*a*b^2 + 24*b^3)*cos(f*x + e)^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(b)*sin(f*
x + e)) + 2*sqrt(a + b)*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 8*(a^2 + 3*a*b + 2*b^2)*cos(f*x + e)^2 - 4
*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a + b)*sin(f*x + e) + 8*a^2 + 16*
a*b + 8*b^2)/cos(f*x + e)^4))/f, -1/8*(4*sqrt(-a - b)*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-
b*cos(f*x + e)^2 + a + b)*sqrt(-a - b)/(((a*b + b^2)*cos(f*x + e)^2 - a^2 - 2*a*b - b^2)*sin(f*x + e))) - sqrt
(b)*log(128*b^4*cos(f*x + e)^8 - 256*(a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^2*b^2 + 24*a*b^3 + 24*b^4)*cos(f
*x + e)^4 + a^4 + 32*a^3*b + 160*a^2*b^2 + 256*a*b^3 + 128*b^4 - 32*(a^3*b + 10*a^2*b^2 + 24*a*b^3 + 16*b^4)*c
os(f*x + e)^2 + 8*(16*b^3*cos(f*x + e)^6 - 24*(a*b^2 + 2*b^3)*cos(f*x + e)^4 - a^3 - 10*a^2*b - 24*a*b^2 - 16*
b^3 + 2*(5*a^2*b + 24*a*b^2 + 24*b^3)*cos(f*x + e)^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(b)*sin(f*x + e)))/f
, 1/4*(sqrt(-b)*arctan(1/4*(8*b^2*cos(f*x + e)^4 - 8*(a*b + 2*b^2)*cos(f*x + e)^2 + a^2 + 8*a*b + 8*b^2)*sqrt(
-b*cos(f*x + e)^2 + a + b)*sqrt(-b)/((2*b^3*cos(f*x + e)^4 + a^2*b + 3*a*b^2 + 2*b^3 - (3*a*b^2 + 4*b^3)*cos(f
*x + e)^2)*sin(f*x + e))) + sqrt(a + b)*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 8*(a^2 + 3*a*b + 2*b^2)*co
s(f*x + e)^2 - 4*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a + b)*sin(f*x +
e) + 8*a^2 + 16*a*b + 8*b^2)/cos(f*x + e)^4))/f, -1/4*(2*sqrt(-a - b)*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - 2
*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a - b)/(((a*b + b^2)*cos(f*x + e)^2 - a^2 - 2*a*b - b^2)*sin(f
*x + e))) - sqrt(-b)*arctan(1/4*(8*b^2*cos(f*x + e)^4 - 8*(a*b + 2*b^2)*cos(f*x + e)^2 + a^2 + 8*a*b + 8*b^2)*
sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-b)/((2*b^3*cos(f*x + e)^4 + a^2*b + 3*a*b^2 + 2*b^3 - (3*a*b^2 + 4*b^3)*
cos(f*x + e)^2)*sin(f*x + e))))/f]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \sin ^{2}{\left (e + f x \right )}} \sec{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sin(e + f*x)**2)*sec(e + f*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sin \left (f x + e\right )^{2} + a} \sec \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*sec(f*x + e), x)